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Data Lake Organization
Fatemeh Nargesian, Ken Pu, Bahar Ghadiri-Bashardoost, Erkang Zhu, Renée J. Miller,

Abstract—We consider the problem of building an organizational directory of data lakes to support effective user navigation. The
organization directory is defined as an acyclic graph that contains nodes representing sets of attributes and edges indicating subset
relationships between nodes. A probabilistic model is constructed to model user navigational behaviour. The model also predicts the
likelihood of users finding relevant tables in a data lake given an organization. We formulate the data lake organization problem as an
optimization over the organizational structure in order to maximize the expected likelihood of discovering tables by navigating. An
approximation algorithm is proposed with an analysis of its error bound. The effectiveness and efficiency of the algorithm are evaluated
on both synthetic and real data lakes. Our experiments show that our algorithm constructs organizations that outperform many existing
organizations including an existing hand-curated taxonomy, a linkage graph, and a common baseline organization. We have also
conducted a formal user study which shows that navigation can help users discover relevant tables that are not easily accessible by
keyword search queries. This suggests that keyword search and navigation using an organization are complementary modalities for
data discovery in data lakes.

Index Terms—Data Lake, Dataset Discovery, Taxonomy, Structure Learning.
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1 INTRODUCTION

The popularity and growth of data lakes is fueling interest in
dataset discovery. Dataset discovery is normally formulated
as a search problem. In one version of the problem, the
query is a set of keywords and the goal is to find tables
relevant to the keywords [1], [2]. Alternatively, the query
can be a table and the problem is to find relevant, joinable,
or unionable tables [3], [4], [5], [6], [7], [8], [9], [10]. A
complementary alternative to search is navigation. In this
paradigm, a user navigates through an organizational struc-
ture to find tables of interest. In the early days of Web search,
navigation was the dominant discovery method for Web
pages. Yahoo!, a mostly hand-curated directory structure,
was the most significant internet gateway for Web page dis-
covery [11]. Even today, hierarchical organizations of Web
content are still used by Youtube.com and Amazon.com.
Hierarchical navigation over entities allows a user to browse
available entities going from more general concepts to
more specific concepts using existing taxonomies or struc-
tures automatically created using taxonomy induction [12],
[13], [14]. When entities have known features, we can
apply faceted-search over entities [15], [16], [17]. Taxon-
omy induction looks for is-a relationships between enti-
ties (e.g., student is-a person), while faceted-search
applies predicates (e.g., model = Volvo) to filter entity
collections [18]. In contrast to hierarchies over entities, in
data lakes, tables contain attributes whose domains may
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mention many different types of entities. There may be
no is-a relationships between tables, or their attributes,
and no easily defined facets for grouping tables. If tables
are annotated with class labels of a knowledge base, the
is-a relationships between class labels could provide an
organization on tables. However, as we will show in our
experiments, knowledge bases are not designed to provide
effective navigation. We propose instead to build an orga-
nization that is designed to best support navigation and
exploration over data lakes. Our goal is not to compete
with or replace search, but rather to provide an alternative
discovery option for users with only a vague notion of what
data exists in a lake.

We define an organization as a Directed Acyclic Graph
(DAG) with nodes that represent sets of attributes from a
data lake. A node may have a label created from attribute
values or metadata. A table can be associated with all
nodes containing any of its attributes. An edge in this DAG
indicates that the set of attributes in a parent node is a
superset of the attributes in a child node. A user finds a
table by traversing a path from a root of an organization to
any leaf node that contains any of its attributes.

We propose the data lake organization problem where the
goal is to find an organization that allows a user to most
efficiently find tables. We describe the user navigation of
an organization using a Markov model. In this model, each
node in an organization is equivalent to a state in the
navigation model. At each state, a user is provided with a
set of next states (the children of the current state). An edge
indicates the transition from the current state to a next state.
Due to the subset property of edges, each transition filters
out some attributes until the navigation reaches attributes
of interest. An organization is effective if certain properties
hold. At each step, a user should be presented with only a
reasonable number of choices (branching factor). The choices
should be distinct to make it easier for a user to choose
the most relevant one. The transition probability function
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of our model assumes users choose the next state that has
the highest similarity to the topic query they have in mind.
Also, the number of choices they need to make (the length of
the discovery path) should not be large.

TABLE 1: Sample Tables from Open Data.

Id Table Name

d1 Surveys Data for Olympia Oysters, Ostrea lurida, in BC
d2 Sustainability Survey for Fisheries
d3 Grain deliveries at prairie points 2015-16
d4 Circa 1995 Landcover of the Prairies
d5 Mandatory Food Inspection List
d6 Canadian Food Inspection Agency (CFIA) Fish List
d7 Wholesale trade, sales by trade group
d8 Historical releases of merchandise imports and exports
d9 Immigrant income by period of immigration, Canada
d10 Historical statistics, population and immigrant arrivals
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Fig. 1: (a) Deep and (b) Effective Organization.

Example 1. Consider the (albeit small) collection of tables from
an open data lake (Table 1). A table can be multi-faceted and
attributes in a table can be about different topics. One way to
expose this data to a user is through a flat structure of attributes
of these tables. A user can browse the data and select data of
interest. If the number of tables and attributes is large, it would be
more efficient to provide an organization over attributes. Suppose
the tables are organized in the DAG of Figure 1(a). The label of a
non-leaf node in this organization summarizes the content of the
attributes in the subgraph of the node. Suppose a user is interested
in the topic of food inspection. Using this organization, at each
step of navigation, they have to choose between only two nodes.
The first two choices seem clear, Economy and Agriculture
and Food Production seem more relevant to the user than their
alternatives (Immigration and Economy). However, having a
small branching factor in this organization results in nodes that
may be misleading. For example, it may not be clear if there is any
inspection data under the node Fish and Food or under Grains.
This is due to the large heterogeneity of attributes (like Oysters
and Grain Elevators) in the organization below the Fish and
Food node. The organization in Figure 1(b) addresses this problem
by organizing some of the attributes of Grains, Food Inspection,
and Fisheries at the same level.

This paper is an extension of prior work [19] that in-
troduced the data lake organization problem as the problem
of finding an organization that maximizes the expected
probability of discovering lake tables. Navigation was mod-
eled as a Markov process that computes the probability of
discovering a table that is relevant to a topic of interest.
A formal user-study, showed that navigation can help users
find a more diverse set of tables than keyword search. In this
paper, we make the following additional contributions.
• We revisit our approximation algorithm for solving the

data lake organization problem and prove an upper
bound for the error of the approximation.

• We consider data lakes that do not have sufficient meta-
data to leverage for creating organizations. We propose a
metadata enrichment algorithm that effectively bootstraps
any existing metadata. We provide an empirical evalua-
tion that shows that metadata can be transferred across
data lakes.

• We provide two important new empirical evaluations.
The first compares using data lake organizations with a
rich general-purpose taxonomy (Yago) [20] to navigate
and find tables in an organization. The second compares
data lake organizations with a common linkage graph [21]
when both are used to navigate a real data lake. Our
results quantify the benefits of using an organization
tailored to the distributions of a real data lake to enable
effective navigation of the lake.

2 FOUNDATIONS

We envision scenarios in which users interactively navigate
through topics in order to locate relevant tables. The topics
are derived and organized based on attributes of tables.
Our model captures user elements such as the cognitive
effort associated with multiple choices and the increasing
complexity of prolonged navigational steps.

2.1 Organization
Let T be the set of all tables in a data lake. Each table T 2 T

consists of a set of attributes, attr(T ). Let A be the set of all
attributes, A =

S
{attr(T ) : T 2 T } in a data lake. Each

attribute A has a set of values that we call a domain and
denote by dom(A). An organization O = (V,E) is a DAG.
Let ch(.) be the child relation mapping a node to its children,
and par(.) be the parent relation mapping a node to its
parents. A node s 2 V is a leaf if ch(s) = ;, otherwise s is an
interior node in O. Every leaf node s of O corresponds to a
distinct attribute As 2 A. Each interior node s corresponds
to a set of attributes Ds ✓ A. If c 2 ch(s), then Dc ✓ Ds, we
call this the inclusion property, and Ds =

S
c2ch(s) Dc. We

denote the domain of a state s by dom(s) which is dom(As)
when s is a leaf node and

S
A2Ds

dom(A) otherwise.

2.2 Navigation Model
We model a user’s experience during discovery using an
organization O as a Markov chain model where states are
nodes and transitions are edges. We will use the terms state
and node interchangeably. Users select a transition at each
step and because of the inclusion property, the transition
from filters out some of the attributes of the state. The
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discovery stops once users reach a leaf node. To define the
effectiveness of an organization, we define a user’s intent
using a query topic X modeled as a set of values. Starting
at the root node, a user navigates through sets of attributes
(states) ideally finding attributes of interest.

Note that when an organization is being used, we do
not know X . Rather we are assuming that a user performs
navigation in a way that they choose nodes that are closest
to their intended topic query. The concept of a user’s query
topic is used only to build an organization. We build an
organization that maximizes the expected probability of
finding any table in the data lake by finding any of its
attributes (assuming a user could potentially have in mind
any attribute in the lake). In other words, the set of query
topics we optimize for is the set of lake attributes and tables.

Given an organization, we define the transition proba-
bility of P (c|s,X,O) as the probability that the user who
searches for topic X will choose c as the next state if they
are at the state s. The probability should be correlated to the
similarity between dom(c) and X . Let (c,X) be a similarity
metric between dom(c) and X . The transition probability is
defined as follows.

P (c|s,X,O) =
e

�
| ch(s)| .(c,X)

P
t2ch(s) e

�
| ch(s)| .(t,X)

(1)

The constant � is a hyper parameter and must be a
strictly positive number. The term | ch(s)| is a penalty factor
to avoid having nodes with too many children. The impact
of the high similarity of a state to X diminishes when a state
has a large branching factor.

A discovery sequence is a path, r = s1, . . . , sk where
si 2 ch(si�1) for 1 < i  k. A state in O is reached through
a discovery sequence. The Markov property says that the
probability of transitioning to a state is only dependent on
its parent. Thus, the probability of reaching state sk through
a discovery sequence r = s1, . . . , sk, while searching for X
is defined as follows.

P (sk|r,X,O) =
kY

i=1

P (si|si�1, X,O) (2)

In this model, a user makes transition choices only based
on the current state and the similarity of their query topic
X to each of the child states. Note that the model naturally
penalizes long sequences. Since an organization is a DAG, a
state can be reached by multiple discovery sequences. The
probability of reaching a state s in O while searching for X
is as follows.

P (s|X,O) =
X

r2Paths(s)

P (s|r,X,O) (3)

where Paths(s) is the set of all discovery sequences in O

that reach s from the root. Additionally, the probability of
reaching a state can be evaluated incrementally. Recall that
par(.) is the parent relation mapping a node to its parents.

P (s|X,O) =
X

p2par(s)

P (s|p,X,O)P (p|X,O) (4)

Definition 1. The discovery probability of an attribute A in
organization O is defined as P (s|A,O), where s is a leaf node.
We denote the discovery probability of A as P (A|O).

2.3 Organization Discovery Problem
A table T is discovered in an organization O by discover-
ing any of its attributes. Here, we make an independence
assumption for the discovery of attributes. Modeling the
correlation between attributes is an interesting direction for
future work.

Definition 2. For a single table T , we define the discovery
probability of a table as follows.

P (T |O) = 1�
Y

A2T

(1� P (A|O)) (5)

For a set of tables T , the organization effectiveness is the
expected probability of finding tables.

P (T |O) =
1

|T |

X

T2T

P (T |O) (6)

The data lake organization problem is to find an organi-
zation that has the highest effectiveness.

Definition 3. Data Lake Organization Problem. Given a set
of tables T in a data lake, the organization problem is to find an
organization Ô such that:

Ô = argmax
O

P (T |O) (7)

2.4 Multi-dimensional Organizations
Given the heterogeneity and massive size of data lakes,
it may be advantageous to perform an initial grouping of
tables and then build an organization on each group. For
example, for the data lake of Example 1, we would define
groups of tables, perhaps a group on Immigration data
and another on Environmental data over which we may
be able to build more effective organizations.

If we have a grouping of A into k (possibly overlapping)
groups or dimensions, G1, . . . , Gk, then we can discover
an organization over each and use them collectively for
navigation. A k-dimensional organization M for a data lake
T is defined as a set of organizations {O1, . . . ,Ok}, such
that Oi is the most effective organization for Gi. For each
dimension, the organization is constructed independently,
Therefore, the probability of finding an attribute in a dimen-
sion is independent of other organizations. We define the
probability of discovering table T in M, as the probability
of discovering T in any of dimensions of M.

P (T |M) = 1�
Y

Oi2M

(1� P (T |Oi)) (8)

3 CONSTRUCTING ORGANIZATIONS

Given the abstract model of the previous section, we now
present a specific instantiation of the model that is suited for
real data lakes. We then consider the metadata that is often
available in data lakes, specifically table-level tags, and ex-
plain how this metadata can be exploited for navigation. We
present a local search algorithm for building an approximate
solution for the data lake organization problem. Finally, we
formally analyze the algorithm and provide an upper bound
on the error in the approximation.
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3.1 Attribute and State Representation

We have chosen to construct organizations over the text
attributes of data lakes. This is based on the observation
that although a small percentage of attributes in a lake are
text attributes (26% for a Socrata open data lake that we
use in our experiments), the majority of tables (92%) have
at least one text attribute. We have found that similarity
between numerical attributes (measured by set overlap or
Jaccard) can be very misleading as attributes that are se-
mantically unrelated can be very similar and semantically
related attributes can be very dissimilar. Therefore, to use
numerical attributes one would first need to understand
their semantics. Work is emerging on how to do this [22],
[23], [24].

Since an organization is used for the exploration of
heterogeneous lakes, we are interested in the semantic sim-
ilarity of values. To capture semantics, a domain can be
canonicalized by its collective word embedding vectors [3].
Each data value v is represented by an embedding vector
~v such that values that are more likely to share the same
context have embedding vectors that are close in embed-
ding space according to a Euclidean or angular distance
measure [25]. Attribute A can be represented by a topic
vector, denoted µA, which is the sample mean of the pop-
ulation {~v|v 2 dom(A)} [3]. In organization construction,
we also represent X by µX . We represent state s with a
topic vector, µs, which is the sample mean of the population
{~v|v 2 dom(s)}.

If a sufficient number of values have word embedding
representatives, the topic vectors of attributes are good
indicators of attributes’ topics. We use the word embed-
dings of fastText database [26], which on average covers
70% of the values in the text attributes in the datasets
used in our experiments. In organization construction, to
evaluate the transition probability of navigating to state c we
choose (c,X) to be the Cosine similarity between µc and
µX . Since a parent subsumes the attributes in its children,
the Cosine similarity satisfies a monotonicity property of
(X, c) > (X, s), where c 2 ch(s). However, the mono-
tonicity property does not necessarily hold for the transition
probabilities.

3.2 State Space Construction

Metadata in Data Lakes Tables in lakes are sometimes
accompanied by metadata hand-curated by the publishers
and creators of data. In enterprise lakes, metadata may come
from design documentation from which tags or topics can be
extracted. For open data, the standard APIs used to publish
data include tags or keywords [27]. In mass-collaboration
datasets, like web tables, contextual information can be used
to extract metadata [28].

State Construction If metadata is available, it can be
distilled into tags (e.g., keywords, concepts, or entities).
In an organization, the leaves still have a single attribute,
but the immediate parent of a leaf is a state containing all
attributes with a given (single) tag. Building organizations
on tags reduces the number of possible states and the size
of the organization while still having meaningful nodes that
represent a set of attributes with a common tag. Suppose

ALGORITHM 1: Algorithm Organize

Input: Data Lake T

Output: Organization O

1 mod ops = [DELETE PARENT, ADD PARENT]
2 O  INIT ORG(T ), p EVAL(O)
3 while ¬termination cond do
4 state STATE TO MODIFY(O)
5 O

0
 CHOOSE APPLY OP(O, state,mod ops)

6 if ACCEPT(EVAL(O0), p) then
7 O  O

0, p p0

8 end
9 end

Ds is the set of attributes in state s. Note the topic vec-
tor of state s, µs, is the sample mean of the population
{~v|v 2 dom(A), A 2 Ds}.

Flat Organization: A Baseline Using metadata, the par-
ent of a leaf node is associated with only one tag. This
means that the last two levels of a hierarchy are fixed and
an organization is constructed over states with a single tag.
If we place a single root node over such states, we get
a flat organization that we can use as a baseline. This is
a reasonable baseline as it is conceptually, the navigation
structure supported by many open data APIs that permit
programmatic access to open data resources. These APIs
permit retrieval of tables by tag.

3.3 Local Search Algorithm
Our local search algorithm, Organize, is outlined in Algo-
rithm 1. It begins with an initial organization (Line 2). The
initial organization may be any organization that satisfies
the inclusion property of nodes. For example, the initial
organization can be the DAG defined based on a hierarchical
clustering of the tags of a data lake. To estimate the posterior
probability, at each step, the algorithm takes a sample from
the space of organization graphs by applying a modification
to the current organization O which leads to a new orga-
nization O

0 (Line 5). If the new organization is closer to
a solution for the Data Lake Organization Problem (Defini-
tion 3), it is accepted as the new organization, otherwise
it is accepted (Line 6) with a probability that is a ratio of the
effectiveness [29]: min[1, P (T |O

0)
P (T |O) ]. The algorithm terminates

(Line 3) once the effectiveness of an organization reaches
a plateau. In our experiments, we terminate when the ex-
pected probability has not improved significantly for the last
50 iterations. It is a common practice to perform several local
searches with different initializations and choose the result
with the highest local optimum among different restart runs.
Here, we describe how one run is performed.

The algorithm strategically tries to maximize the ef-
fectiveness of an organization by making its states highly
reachable. We use Equation 4 to evaluate the probability to
reach a state when searching for attribute A and define the
overall reachability probability of a state as follows.

P (s|O) =
1

|A 2 T |

X

A2T

P (s|A,O) (9)

Starting from an initial organization, the search algorithm
performs downward traversals from the root and modifies
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the organization for states in each level of the organiza-
tion ordered from lowest reachability probability to highest
(Line 4 and 5). A state is in level l if the length of the
shortest discovery paths from the root to the state is l.
At each iteration, a set of operations are applied on a
node, each creating an organization, then the most effective
organization is selected. We restrict our choices of a new
organization at each search step to those created by the
following operations.

Adding Parent Given a state s with low reachability
probability, one reason for this may be that it is one child
amongst many of its current parent. We can remedy this by
adding a new parent for s. Suppose that the search algo-
rithm chooses to modify the organization with respect to
state s. Recall that Equation 4 indicates that the probability
to reach a state increases as it is connected to more parent
states. Suppose s is at level l of the organization O. The
algorithm finds the state, called n, at level l � 1 of O such
that it is not a parent of s and has the highest reachability
probability among the states at l�1. To satisfy the inclusion
property, we update node n and its ancestors to contain the
attributes in s, Ds. State n is added to the organization as
a new parent of s. ADD_PARENT potentially increases the
reachability probability of a state by adding more discovery
paths ending at that state, at the cost of increasing the
branching factor.

Deleting Parent Another reason a state can have low
reachability is that its parent has low reachability probability
and we should perhaps remove a parent. Reducing the
length of paths from the root to state s is a second way
to boost the reachability probability of s. The operation
eliminates the least reachable parent of s, called r. To reduce
the height of O, the operation eliminates all siblings of r
except the ones with one tag. Then, it connects the children
of each eliminated state to its parents. This operation does
not change the number of paths in the graph that lead to the
node and due to the inclusion property, it does not change
the representation of the grandparent nodes either. In fact, it
only makes the length of paths to s smaller which boosts the
reachability probability of s. However, the branching factor
of the grandparent increases which decreases the transition
probabilities from that state.

In Algorithm 1, STATE_TO_MODIFY (Line 4) orders
states by level starting at level 1 and within a level by reach-
ability (lowest to highest) and returns the next state each
time it is called. CHOOSE_APPLY_OP picks the operator that
when applied creates the most effective organization O

0. Ev-
ery time a new organization is chosen, STATE_TO_MODIFY
may need to reorder states appropriately.

4 SCALING ORGANIZATION SEARCH

The evaluation of the effectiveness (Equation 7) involves
computing the discovery probability for all attributes and
evaluating the probability of reaching the states along the
paths to an attribute (Equation 4). The organization graph
can have a large number of states, especially at the ini-
tialization phase. To improve the search efficiency, we first
identify the subset of states and attributes whose discovery
probabilities may be changed by an operation and second

we approximate the new discovery probabilities using a set
of attribute representatives.

4.1 Affected States

At each search iteration, we only re-evaluate the discovery
probability of the states and attributes which are affected
by the local change. Upon applying DELETE PARENT on
a state, the transition probabilities from its grandparent to
its grandchildren are changed and consequently all states
reachable from the grandparent. However, the discovery
probability of states that are not reachable from the grand-
parent remain intact. Therefore, for DELETE PARENT, we
only re-evaluate the discovery probability of the states in the
subgraph rooted by the grandparent and only for attributes
associated with the leaves of the subgraph.

The ADD PARENT operation impacts the organization
more broadly. Adding a new parent to a state s changes the
discovery probability of s and all states that are reachable
from s. Furthermore, the parent state and consequently its
ancestors are updated to satisfy the inclusion property of
states. Suppose the parent itself has only one parent. The
change of states propagates to all states up to the lowest
common ancestor (LCA) of s and its parent-to-be before
adding the transition to the organization. If the parent-to-
be has multiple parents the change needs to be propagated
to other subgraphs. To identify the part of the organization
that requires re-evaluation, we iteratively compute the LCA
of s and each of the parents of its parent-to-be. All states in
the subgraph of the LCA require re-evaluation.

4.2 Approximating Discovery Probability

To further speed up the search, we evaluate an organization
on a small number of attribute representatives that each
summarizes a set of attributes. The discovery probability
of each representative approximates the discovery proba-
bility of its corresponding attributes. We assume a one-
to-one mapping between representatives and partitions of
attributes. Suppose ⇢ is a representative for a set of attributes
D⇢ = {A1, . . . , Am}. We approximate P (Ai|O), Ai 2 D⇢

with P (⇢|O). The choice and the number of representatives
impact the error of this approximation.

Theorem 1. The approximation error of the discovery probability
of attribute A using its representative ⇢ in organization O is:

✏r  (
kY

i=1

P (si|si�1, A,O)).(1�
1

e�0(1�(⇢,A))
)k. (10)

where A is reachable with the discovery path r = s1, . . . , sk.

Proof. Recall that the discovery probability of a leaf state
is the product of transition probabilities along the path
from the root to the state. To determine the error that a
representative introduces to the discovery probability of
an attribute, we first define an upper bound on the error
incurred by using representatives in transition probabilities.
We show that the error of transition probability from m to s
is bounded by a fraction of the actual transition probability
which is inversely correlated with the similarity of the
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representative to the attribute. For brevity, in Equation 1,
we assume �0 = �

|ch(m)| .

P (si|m,A,O) =
e�

0(A,si)

P
sj2ch(m) e

�0(A,sj)
(11)

Suppose � is the distance defined based on , which is
�(a, b) = 1 � (a, b). From the triangle property, it follows
that:

�(si, ⇢k)  �(si, A) + �(A, ⇢) (12)

Evaluating P (si|m,A,O) and P (si|m, ⇢,O) requires com-
puting (A, sj) and (⇢, sj) on ch(m). We rewrite the
triangle property as follows:

1� (si, ⇢)  1� (si, A) + 1� (A, ⇢) (13)

Therefore, the upper bound of (si, A) is defined as follows.

(si, A)  (si, ⇢)� (A, ⇢) + 1 (14)

We also have the following.

0  (si, A)� (si, ⇢)  1� (A, ⇢) (15)

Let �i = (si, A) � (si, ⇢). Without loss of generality,
we assume (si, A) > (si, ⇢), thus �i is a positive num-
ber. Now, we can rewrite (si, ⇢) = (si, A) � �i. From
Equation 1, we know that P (si|m,A,O) and P (si|m, ⇢,O)
are monotonically increasing with (s,A) and (si, ⇢), re-
spectively. Therefore, the error of using the representative ⇢
in approximating the probability of transition from m to si
when looking for A is as follows:

✏ = P (si|m,A,O)� P (si|m, ⇢,O) (16)

It follows from the monotonicity property that ✏ � 0. By
applying Equation 11 to ✏, we have the following:

✏ =
e�

0(A,si)

P
sj2ch(m) e

�0(A,sj)
�

e�
0(⇢,si)

P
sj2ch(m) e

�0(⇢,sj)
(17)

We rewrite the error by replacing (si, ⇢) with (si, A)��i.

✏ =
e�

0(A,si)

P
sj2ch(m) e

�0(A,sj)
�

e�
0(si,A).e��0�i

P
sj2ch(m) e

�0(sj ,⇢).e��0�j

(18)
Following from Equation 15, we have:

1

e�0(1�(A,⇢))
 e��0�i  1 (19)

The upper bound of the approximation error of the transi-
tion probability is:

✏ 
e�

0(A,si)

P
sj2ch(m) e

�0(A,sj)
�

e�
0(A,si)

P
sj2ch(m) e

�0(A,sj)
.

1

e�0(1�(⇢,A))
(20)

The error can be written in terms of the transition probabil-
ity to a state given an attribute:

✏  P (si|m,A,O).(1�
1

e�0(1�(⇢,A))
) (21)

Since e�
0(1�(⇢,A))

� 1, the error is bounded.

Assuming the discovery path r = s1, . . . , sk, the bound
of the error of approximating P (Ai|O) using ⇢ is as follows:

✏r  (
kY

i=1

P (si|si�1, A,O)).(1�
1

e�0(1�(⇢,A))
)k (22)

To minimize the error of approximating P (s|m,A,O)
considering ⇢ instead of A, we want to choose ⇢’s that
have high similarity to the attributes they represent, while
keeping the number of ⇢’s relatively small. In our experi-
ments, we apply a practical way of creating representatives.
Attributes are partitioned using k-means clustering and the
centroid of each cluster is considered as the representative of
attributes in the cluster. Indeed, the problem of finding the
optimal set of representatives that minimizes the approxi-
mation error for all attributes is an interesting problem that
we would like to investigate going forward.

4.3 Structural and Semantic Processing of Metadata
Tags provide an initial grouping on attributes and reduce
organization discovery cost. However, tags may be incom-
plete (some attributes may have no tags). Moreover, the
schema and vocabulary of metadata across data originating
from different sources may be inconsistent which can lead
to disconnected organizations.

We propose to transfer tags across data lakes such that
data lakes with no (or little) metadata are augmented with
the tags from other data lakes. Annotating attributes with
existing tags is a multi-label multi-class classification prob-
lem, which we choose to solve by training binary classifiers,
one per tag, which predict the association of attributes to the
corresponding tags. The classifiers are trained on the topic
vector, µA, of attributes.

The metadata in data lakes is created and published
by different sources, as a result, it does not follow a stan-
dard format. To start, we normalize the existing metadata
following a series of syntactic, semantic, and frequency-
driven approaches. Let K be the set of tags, assigned to
the collection of attributes A. Let r(t, A) denote the fact
that tag t 2 K is assigned to attribute A 2 A. Since
our objective is to generate a user-efficient hierarchical
organization for A using the tags, we want to identify
redundant tags and prune them as potential candidates.
For syntactic pruning, we utilize a stemmer to compute a
normalized string representation of the tags. All the tags
that share the same normal form are collapsed into a single
meta tag. We further identify semantically equivalent tags by
comparing the word embedding vectors and their strings.
Any group of tags {t1, t2, . . . , tk}, such that their pair-wise
cosine similarity is close to one are merged into a single
meta tag, that is, 8i, j  k, sim(emb(ti), emb(tj)) � 1� ✏.

Finally, we also consider the co-occurrences of tags. Let
D(t) = {A 2 A : r(t, A)}. Given two tags t0 and t1, if
one is subsumed by the other, that is D(t0) ⇢ D(t1), we
should merge t0 in t1 to form a meta tag and eliminate
t0. The concept of tag subsumption can be generalized to
meta tags including a larger number of tags. We define k-
subsumption as the situation where t0 is subsumed by k
other tags {t1, t2, . . . , tk} where D(t0) ⇢ [

k
i=1D(ti).
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The support of a tag t is the number of documents tagged
by t, denoted by |D(t)|. In our experiments, we consider
tags to be redundant if they are 1-subsumed or 2-subsumed,
and have a support  20. As an example, suppose that a
tag t0 is 2-subsumed by (t1, t2), we would remove t0 from
the organization since the user can discover the documents
tagged by t0 using either t1 and t2.

5 EVALUATION

We first seek to quantify and understand some of the
design decisions, the efficiency, and the influence of using
approximation for our approach. We do this using a small
synthesized benchmark called TagCloud that is designed
so that we know precisely the best tag per attribute. Next,
using real open data, in Section 5.4, we quantify the benefits
of our approach over 1) an existing ontology (Yago [20]) for
navigation; 2) a flat baseline; and 3) a table linkage graph,
called an Enterprise Knowledge Graph [30], to navigate. We
also illustrate that tags from a real open data lake can be
easily transferred to a different data lake with no metadata
using a simple classifier (Section 4.3). Finally, we present a
user study in Section 5.6.

5.1 Datasets
We begin by describing our real and synthetic datasets
which are summarized in Table 2.

TABLE 2: Experimental Datasets

Name #Tables #Attr #Tags

Socrata 7,553 50,879 11,083
Socrata-1 1,000 5,511 3,002
Socrata-2 2,175 13,861 345
Socrata-3 2,061 16,075 346
CKAN 1,000 7,327 0
TagCloud 369 2,651 365
YagoCloud 370 2,364 500

Socrata and CKAN Data Lakes - For our comparison
studies, we used real open data. We crawled 7,553 tables
with 11,083 tags from the Socrata API. We call this lake
Socrata. It contains 50,879 attributes containing words
that have a word embedding. In this dataset, a table may
be associated with many tags and attributes inherit the
tags of their table. Particularly, all tables have at least a
name as metadata and 88.9% are accompanied by at least
one category or tag metadata fields, both of which we
consider as tags. This metadata is created by the publisher
and indeed can be incomplete. In Section 4.3, we propose a
way of further enriching the metadata by annotating each
attribute with the existing tags in the data lakes which leads
to an improved organization. We have 264,199 attribute-
tag associations. The distribution of tags per table and
attributes per table of Socrata lake is plotted in Figure 2.
The distribution is skewed with two tables having over
100K tags and the majority of the tables having 25 or fewer.
Socrata-1 is a random collection of 1,000 tables and 3,002
tags from Socrata lake that we use in our comparison with
the Enterprise Knowledge graph. Socrata-2 is a collection
of 2,061 tables and 345 tags from Socrata and Socrata-3
is a collection of 2,175 tables and 346 tags from Socrata.

(a) (b)

Fig. 2: Distribution of (a) Tags and (b) Attributes per Table
in Socrata.

Note that Socrata-2 and Socrata-3 do not share any
tags and are used in our user study. The CKAN data lake is a
separate collection of 1,000 tables and 7,327 attributes from
the CKAN API.

TagCloud benchmark - To study the impact of the den-
sity of metadata and the usefulness of multi-dimensional
organizations, we synthesized a dataset where we know
exactly the most relevant tag for an attribute. Note that in
the real open data, tags may be incomplete or inconsistent
(data can be mislabeled). We create only a single tag per
attribute which is actually a disadvantage to our approach
that benefits from more metadata. The benchmark is small
so we can report both accuracy and speed for the non-
approximate version of our algorithm in comparison to the
approximate version that computes discovery probabilities
using attribute representatives. We synthesized a collection
of 369 tables with 2,651 attributes. First, we generate tags by
choosing a sample of 365 words from the fastText database
that are not very close according to Cosine similarity. The
word embeddings of these words are then used to gen-
erate attributes associated with tags. Each attribute in the
benchmark is associated with exactly one tag. The values of
an attribute are samples of a normal distribution centered
around the word embedding of a tag. To sample from the
distribution of a tag, we selected the k most similar words,
based on Cosine similarity, to the tag, where k is the number
of values in the attribute (a random number between 10
and 1,000). This guarantees that the distribution of the
word embedding of attribute values has small variance and
the topic vector of attributes are close to their tags. This
artificially guarantees that the states that contain the tag of
an attribute are similar to the attribute and likely have high
transition probabilities.

To emulate the metadata distribution of real data lakes
(where the number of tags per table and number of at-
tributes per table follow Zipfian distributions (Figure 2)), we
generated tables so that the number of tags (and therefore
attributes) also follows a Zipfian distribution. In the bench-
mark the number of attributes per table is sampled from [1,
50] following a Zipfian distribution.

YagoCloud benchmark - To have a fair comparison
with YAGO, we cannot use our real open data lakes because
YAGO has low coverage over this data. Hence, we synthesis
a data lake where YAGO has full coverage and therefore the
class hierarchy of YAGO would be a reasonable alternative
for navigation. YagoCloud is a collection of 370 tables with
2,364 attributes that can be organized using the taxonomy
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of YAGO. Like TagCloud benchmark, the distribution of
attributes in tables and tags per table in this benchmark is
created to emulate the observed characteristics of our crawl
of open data portals (Figure 2). In YAGO, each entity is asso-
ciated with one or more types. We consider 500 random leaf
types that contain the words agri, food, or farm in their
labels. These types are equivalent to tags. Each attribute in
the benchmark is associated with exactly one tag. For each
attribute of a table, we randomly sample its values from the
set of entities associated with its tag. This guarantees that
the attribute is about the type (tag). We tokenize the sampled
entities into words and the word embeddings of these words
are then used to generate the topic vectors of attributes.
The number of values in an attribute is a random number
between 10 and 1000. and the number of attributes per table
is sampled from [1, 50] following a Zipfian distribution.

The subgraph of the YAGO taxonomy that covers all
ancestor classes of the benchmark types is considered as the
taxonomy defined on benchmark attributes. This taxonomy
is a connected and acyclic graph. Each class in the taxonomy
is equivalent to a non-leaf state of navigation. To guarantee
the inclusion property in the taxonomy, each non-leaf state
consists of the tags corresponding to its descendant types.
The topic vector of an interior state is generated by aggre-
gating the topic vectors of its descendant attributes.

5.2 Experimental Set-up

Evaluation Measure: For our evaluation, we do not
have a user. We simulate a user by reporting the success
probability of finding each table in the lake. Conceptually
what this means is that if a user had in mind a table that is in
the lake and makes navigation decisions that favor picking
states that are closest to attributes and tags of that table, we
report the probability that they would find that table using
our organization.

We therefore report for our experiments a measure we
call success probability that considers a navigation to be
successful if it finds tables with an attribute of or a similar
attribute to the query’s attributes. We first define the success
probability for attributes. Specifically, let  be a similarity
measure between two attributes and let 0 < ✓  1 be a
similarity threshold.

Definition 4. The success probability of an attribute A is
defined as

Success(A|O) = 1�
Y

Ai2A^(Ai,A)�✓

(1� P (Ai|O)) (23)

We use the Cosine similarity on the topic vectors of
attributes for  and a threshold ✓ of 0.9. Based on attribute
success probabilities, we can compute table success prob-
ability as Success(T |O) = 1 �

Q
A2T (1 � Success(A|O)).

We report success probability for every table in the data lake
sorted from lowest to highest probability on the x-axis (see
Figure 3 as an example).

Implementation: Our implementation is in Python
and uses scikit-learn library for creating initial organiza-
tions. Our experiments were run on a 4-core Intel Xeon
2.6 GHz server with 128 GB memory. To speed up the
evaluation of an organization, we cache the similarity scores

(a) (b)

Fig. 3: Success Probability of Organizations (a) on
TagCloud Benchmark and (b) YagoCloud Benchmark.

of attribute pairs as well as attribute and state pairs as states
are updated during search.

5.3 Performance of Approximation
We evaluate the effectiveness and efficiency of our exact
algorithm (using exact computation of discovery probabili-
ties, not the approximation discussed in Section 4.2) on the
TagCloud benchmark.

5.3.1 Effectiveness
We constructed the baseline organization where each
attribute has as parents the states consisting of tags of
the attribute. Recall in this benchmark each attribute has
a single, accurate tag. This organization is similar to the
organization of open data portals. We performed an agglom-
erative hierarchical clustering over this baseline to create a
hierarchy with branching factor two. This organization is
called clustering. Then we used our algorithm to op-
timize the clustering organization to create N-dimensional
(N 2 {1, 2, 3, 4}) organizations (called N-dim). Figure 3
reports the success probability of each table in different
organizations.

In the baseline organization, requires users to con-
sider a large number of tags and select the best, hence the
average success probability for tables in this organization
is just 0.016. This clustering organization outperforms
the baseline by ten times. This is because the smaller
branching factor of this organization reduces the burden
of choosing among so many tags as the flat organiza-
tion and results in larger transition probabilities to states
even along lengthy paths. Our 1-dim optimization of the
clustering organization improves the success probability
of the clustering organization by more than three times.

To create the N-dimensional organization (N > 1), we
clustered the tags into N clusters (using n-medoids) and
built an organization on each cluster. The 2-dim organiza-
tion has an average success probability of 0.326 which is
an improvement over the baseline by 40 times. Although
the number of initial tags is invariant among 1-dimensional
and multi-dimensional organizations since each dimension
is constructed on a smaller number of tags that are more
similar, increasing the number of dimensions in an organiza-
tion improves the success probability, as shown in Figure 3.

In Figure 3, almost 47 tables of TagCloud have very low
success probability in all organizations. We observed that
almost 70% of these tables contain only one attribute each
of which is associated with only one tag. This makes these
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(a) (b)

Fig. 4: Pruning (a) Domains and (b) States on TagCloud
Benchmark.

tables less likely to be discovered in any organization. To
investigate this further, we augmented TagCloud to asso-
ciate each attribute with an additional tag (the closest tag
to the attribute other than its existing tag). We built a two-
dimensional organization on the enriched TagCloud, which
we name enriched 2-dim. This organization proves to
have higher success probability overall, and improves the
success probability for the least discoverable tables.

5.3.2 Efficiency
The construction time of clustering, 1-dim, 2-dim,
3-dim, 4-dim, and enriched 2-dim organizations are
0.2, 231.3, 148.9, 113.5, 112.7, 217 seconds, respectively.
Note that the baseline relies on the existing tags and
requires no additional construction time. Since dimensions
are optimized independently and in parallel, the reported
construction times of the multi-dimensional organizations
indicate the time it takes to finish optimizing all dimensions.

5.3.3 Approximation
The effectiveness and efficiency numbers we have reported
so far are for the non-approximate version of our algorithm.
To evaluate an organization during search we only examine
the states and attributes that are affected by the change
an operation has made. Thus, this pruning guarantees ex-
act computation of success probabilities. Our experiments,
shown in Figure 4, indicate that although local changes
can potentially propagate to the whole organization, on
average less than half of states and attributes are visited
and evaluated for each search iteration. Furthermore, we
considered approximating discovery probabilities using a
representative set size of 10% of the attributes and only eval-
uated those representatives that correspond to the affected
attributes. This reduces the number of discovery probabil-
ity evaluations to only 6% of the attributes. As shown in
Figure 3, named 2-dim approx, this approximation has
negligible impact on the success probabilities of tables in the
constructed organization. The construction time of 2-dim
(without the approximation) is 148.9 seconds. For 2-dim
approx (using a representative size of 10%) is 30.3 seconds.
The remaining experiments report organizations (on much
larger lakes) created using this approximation for scalability.

5.4 Comparison of Organizations
We now compare our approach with (1) a hand-curated tax-
onomy on the YagoCloud benchmark, (2) the flat baseline
on a large real data lake Socrata, and (3) an automatically

generated enterprise knowledge graph (EKG) [21], [30] on a
smaller sample of this lake Socrata-1.

5.4.1 Comparison to A Knowledge Base Taxonomy
We compare the effectiveness of using the existing YAGO
taxonomy on YagoCloud tables for navigation with our
organization. Figure 3b shows the success probability of
tables in the benchmark when navigating the YAGO taxon-
omy and our data lake organization. The taxonomy consists
of 1,171 nodes and 2,274 edges while our (1-dimensional)
organization consists of 442 nodes and 565 edges. Each state
in the optimized organization consists of a set of types
that need to be further interpreted while each state in the
taxonomy refers to a YAGO class label. However, the more
compact representation of topics of the attributes leads to
a more effective organization for navigation. To understand
the influence of taxonomy/organization size on discovery
effectiveness, we condensed the taxonomy. To create the
condensed taxonomy, we have adopted a similar approach
as knowledge fragment selection approach [31] to gather infor-
mation which is most important to the task of navigation
and eliminated the immediate level of nodes above the
leaves unless they have other children. This leads to a
taxonomy that has 444 nodes and 1,587 edges which is closer
to the size of our organization. Condensing the taxonomy
increases the branching factor of nodes while decreasing the
length of discovery paths. This leads to a slight decrease
in success probability compared to the original taxonomy.
Knowledge base taxonomies are efficient for organizing the
knowledge of entities. However, our organizations are able
to optimize the navigation better based on the data lake
distribution.

5.4.2 Comparison to a Baseline
We constructed ten organizations on the Socrata lake by
first partitioning its tags into ten groups using k-medoids
clustering [32]. We apply Algorithm 1 on each cluster to
approximate an optimal organization. We use an agglomer-
ative hierarchical clustering of tags in Socrata as the initial
organization. In each iteration, we approximate the success
probability of the organization using a representative set
with a size that is 10% of the total number of attributes in
the organization. Table 3 reports the number of representa-
tives considered for this approximation in each organization
along with other relevant statistics. Since the cluster sizes
are skewed, the number of attributes reachable via each
organization has a high variance. Recall that Socrata has
just over 50K attributes and they might have multiple tags,
so many are reachable in multiple organizations. It took 12
hours to construct the multi-dimensional organization.

Figure 5a shows the success probability of the ten organi-
zations on the Socrata data lake. Using this organization,
a table is likely to be discovered during navigation of the
data lake with probability of 0.38, compared to the current
state of navigation in data portals using only tags, which
is 0.12. Recall that to evaluate the discovery probability of
an attribute, we evaluate the probability of discovering the
penultimate state that contains its tag and multiply it by the
probability of selecting the attribute among the attributes
associated with the tag. The distribution of attributes to
tags depends on the metadata. Therefore, the organization
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TABLE 3: Statistics of 10 Organizations of Socrata Lake.

Org #Tags #Atts #Tables #Reps

1 2,031 28,248 3,284 2,824
2 1,735 11,363 1,885 1,136
3 1,648 20,172 9,792 2,017
4 1,572 19,699 2,933 1,969
5 1,378 11,196 1,947 1,119
6 1,245 17,083 1,934 1,708
7 829 8,848 1,302 884
8 353 6,816 831 681
9 240 3,834 614 383
10 43 118 33 11

(a) (b)

Fig. 5: (a) Success Probability of Tables in Socrata Lake
using Organization and Baseline. (b) Success Probability of
Tables in Socrata-1 Lake using Organization and EKG.

algorithm does not have any control on the branching factor
at the lowest level of the organization, which means that
the optimal organization is likely to have a lower success
probability than 1.

5.4.3 Comparison to Linkage Navigation
Automatically generated linkage graphs are an alterna-
tive navigation structure to an organization. An example
of a linkage graph is the Enterprise Knowledge Graph
(EKG) [21], [30]. Unlike organizations which facilitate ex-
ploratory navigation, in EKG, navigation starts with known
data. A user writes queries on the graph to find related
attributes through keyword search followed by similarity
queries to find other attributes similar to these attributes.

To study the differences between linkage navigation
and organization navigation, we compare the probability
of discovering tables using each. We used a smaller lake
(Socrata-1) for this comparison because the abundance of
linkages between attributes in a large data lake makes our
evaluation using large EKGs computationally expensive. In
the EKG, each attribute in a data lake is a node of the graph
and there are edges based on node similarity. A syntactic
edge means the Jaccard similarity of attribute values [30] is
above a threshold and a semantic edge means the combined
semantic and syntactic similarity of the attribute names is
above a threshold [21]. To use EKG for navigation, we adapt
Equation 1 such that the probability of a user navigating
from node m to an adjacent node s is proportional to the
similarity of s to m and is penalized by the branching factor
of m. We consider the similarity of s and m to be the
maximum of their semantic similarity and syntactic simi-
larity. Since the navigation can start from arbitrary nodes,
to compute the success probability of a table in an EKG, we
consider the average success probability of a table over up

to 500 runs each starting from a random node. We use the
threshold ✓ = 0.9 for filtering the edges in EKG. This makes
3,989 nodes reachable from some node in the graph. The
average and maximum branching factors of this EKG are
122.30 and 725, respectively. The average success probability
of is 0.0056.

Figure 5b shows the success probability of navigation us-
ing an EKG and using an organization built on Socrata-1,
when we limited the start nodes to be the ancestors of
attributes of a table. Although the data lake organization
has higher construction time (2.75 hours) than the EKG
(1.3 hours), it outperforms EKG in effectiveness. The EKG
is designed for discovering similar attributes to a known
attribute. When EKG is used for exploration, the navigation
can start from arbitrary nodes which results in long discov-
ery paths and low success probability. Moreover, depending
on the connectivity structure of an EKG, some attributes are
not reachable in any navigation run (points in the left side of
Figure 5b). In an EKG the number of navigation choices at
each node depends on the distribution of attribute similarity.
This causes some nodes to have high branching factor and
leads to overall low success probability.

5.5 Analysis of Metadata Processing
For our experiments, we removed all tags from the CKAN
lake and we transfer the tags of the Socrata data lake to
attributes of CKAN. Figure 6a shows the distribution of de-
duplicated positive training samples per tag in Socrata.
As part of the preprocessing, we perform syntactic, seman-
tic, and structural normalization to the tags. For syntactic
normalization, we perform word stemming1. Two tags that
share the same stem are merged together. This process
removed 1,186 tags. For semantic normalization, we merged
tags that are semantically similar. For this, we rely on their
word embedding vectors. Any pairs of tags that have cosine
similarity between their embedding vectors greater than 0.9
are merged. This further reduced the unique tags by 1,156.

Finally, we perform structural normalization in which tags
that have small support ( 20 documents), and that are
subsumed by at most two other tags are merged. Structural
normalization reduced the tag count by over 8,000. This
shows that, in practice, tag clouds have high degree of
redundancy and that many outlier tags are not essential in
generating navigational organizations. In the end, we have
1,156 meta tags to guide the organization.

We employed the distributed gradient boosting of XG-
Boost [33] to train classifiers on the tags with at least 10 pos-
itive training samples (866 tags). We considered the ratio of
one to nine for positive and negative samples. The training
algorithm performs grid search for hyper-parameter tuning
of classifiers. Figure 6b demonstrates the accuracy of the
10-fold cross validation of the classifiers with top-100 F1-
scores. Out of 866 tags of Socrata, 751 were associated with
CKAN attributes and a total of 7,347 attributes got at least
one tag. The most popular tag is domaincategory government.
Figure 7a shows the distribution of newly associated tags
to CKAN attributes for the 20 most popular tags. Figure 7b
reports the success probability of a 1-dimensional organi-
zation. More than half of the tables are now searchable

1. https://www.nltk.org/howto/stem.html
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(a) (b)

Fig. 6: (a) No. Positive Training Samples and
(b) Accuracy of Tag Classifiers.

(a) (b)

Fig. 7: (a) Distribution of Tags Added to CKAN
(b) Success Prob. of CKAN after Metadata Enrichment.

through the organization that were otherwise unreachable
in the lake.

5.6 User Study

We performed a formal user study to compare search by
navigation to the major alternative of keyword search.
Through a formal user study, we investigated how users
perceive the usefulness of the two approaches.

To remain faithful to keyword search engines, we created
a semantic search engine that supports keyword search over
attribute values and tables metadata (including attribute
names and table tags). The search engine performs query
expansion with semantically similar terms. The search en-
gine supports BM25 [34] document search and semantic
keyword search using pre-trained GloVe word vectors [35].
Our implementation uses the library Xapian 2 to perform
keyword search. Users can optionally enable query expan-
sion by augmenting the keyword query with additional
semantically similar terms. We also created a prototype that
enables participants to navigate our organizations. In this
prototype, each node is labeled with a set of representative
tags. We label leaf nodes (where attributes are located) with
corresponding table names and penultimate nodes (where
single tags are located) with the corresponding tags. The
remaining nodes are labeled with the two most frequent
unseen tags, among its children’s labels. Of course we may
not always pick the best tag for a particular user. Hence, our
system allows for the dynamic inclusion of additional tags
at the interface level. A user may click to explore additional
relevant tags to a node other than the ones used as labels.
At each state, the user can navigate to a desired child node
or backtrack to the parent of the current node.

2. https://xapian.org/

Hypotheses. The goal of our user study is to test the
following hypotheses: H1) given the same amount of time,
participants would be able to find as many relevant tables
with navigation as with keyword search; H2) given the same
amount of time, participants who use navigation would
be able to find relevant tables that cannot be found by
keyword search. We measure the disjointness of results with
the symmetric difference of result sets normalized by the
size of the union of results, i.e., for two result sets R and T ,
the disjointness is computed by 1� |R\T |

|R[T |
.

Study Design. We considered Socrata-2 and
Socrata-3 data lakes for our user study and defined an
overview information need scenario for each data lake. We
made sure that these scenarios are similar in difficulty by
asking a number of domain experts who were familiar
with the underlying data lakes to rate several candidate
scenarios. Note that the statistically insignificant difference
between the number of tabels found for each scenario by
our participants provides evidence that our two scenar-
ios were infact similar in difficulty. The scenario used for
Socrata-2 asks participants to find tables relevant to the
scenario “suppose you are a journalist and you’d like to find
datasets published by governments on the topic of smart
city ”. The scenario used for Socrata-3 asks participants
to find tables relevant to the scenario “Suppose you are a
data scientist in a medical company and you would like to
find datasets about clinical research”. During the study, we
asked participants to use keyword search and navigation to
find a set of tables which they deemed relevant to given
scenarios. For this study, we recruited 12 participants using
convenience sampling [36], [37].

This study was a within-subject design. In our setting, we
want to avoid two potential sources of invalidity. First, par-
ticipants might become familiar with the underlying data
lake during the first scenario which then might help them to
search better in their second scenario. To address this prob-
lem, we made sure that Socrata-2 and Socrata-3 do not
have overlapping tags and tables. Second, the sequence in
which the participants use the two search approaches can
be the source of confounding. To mitigate for this problem,
we made sure that half of the participants first performed
keyword search and the rest performed navigation first.
In summary, we handled the effect of these two sources
of invalidity using a balanced Latin square design with
4 blocks (block 1: Socrata-2/navigation first, block 2:
Socrata-3/navigation first, etc.). We randomly assigned
equal number of participants to each of these blocks. For
each participant, the study starts with a short training
session, after that, we gave the participants 20 minutes for
each scenario.

Results. Because of our small sample size, we used the
non-parametric Mann-Whitney test to determine the signifi-
cance of the results and tested our two-tailed hypotheses.
We found that there is no statistically significant differ-
ence between the number of relevant tables found using
the organization and keyword search. We first asked two
collaborators to eliminate irrelevant tables found. Since the
number of irrelevant data was negligible (less than 1% for
both approaches) we will not further report on this process.
This confirms our first hypothesis. The maximum number of
tables found by navigating an organization and performing
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keyword search was 44 and 34, respectively. Moreover, a
Mann-Whitney test indicated that the disjointness of results
was greater for participants who used organization (Mdn
= 0.985) than for participants who used keyword search
(Mdn = 0.916), U = 612, p = 0.0019. This confirms our
second hypothesis. Note that the disjointness was computed
for each pair of participants who worked on the same
scenario using the same approach, then the pairs generated
for each technique were compared together. Based on our
investigation, this difference might be because participants
used very similar keywords, whereas the paths which were
taken by each participant while navigating an organization
were very different. In other words, As some participants
described, they were having a hard time finding keywords
that best described their interest since they did not know
what was available, whereas with our organization, at each
step, they could see what seemed more interesting to them
and find their way based on their preferences. As one
example, for the smart city overview scenario, everyone
found tables tagged with the term City using search. But
using organization, some users found traffic monitoring
data, while others found crime detection data, while others
found renewable energy plans. Of course, if they knew a
priori this data was in the lake they could have formulated
better keyword search queries, but navigation allowed them
to conveniently discover these relevant tables without prior
knowledge. One very interesting observation in this study
is that although participants find similar number of tables,
there is only around 5% intersection between tables found
using keyword search and tables found using our approach.
This suggests that organization can be a good complement
to the keyword search and vice versa.

We evaluated the usability by asking each participant
to fill out a standard post-experiment system usability scale
(SUS) questionnaire [38] after each block. This questionnaire
is designed to measure a user’s judgment of a system’s effec-
tiveness and efficiency. We analyzed participants’ rankings,
and kept record of the number of questions for which they
gave a higher rankings to each approach. Our results indi-
cate that 58% of the participants preferred to use keyword
search, we suspect in part due to familiarity. No participant
had neutral preference. Still having 42% prefer navigation
indicates a clear role for this second, complementary modal-
ity.

6 RELATED WORK

Entity-based Querying - While traditional search engines
are built for pages and keywords, in entity search, a user
formulates queries to directly describe her target entities and
the result is a collection of entities that match the query [39].
An example of a query is “database #professor”, where
professor is the target entity type and “database” is a
descriptive keyword. Cheng et. al propose a ranking algo-
rithm for the result of entity queries where a user’s query
is described by keywords that may appear in the context of
desired entities [40].

Data Repository Organization - Goods is Google’s spe-
cialized dataset catalog for about billions of Google’s inter-
nal datasets [41]. The main focus of Goods is to collect and
infer metadata for a large repository of datasets and make it

searchable using keywords. Similarly, IBM’s LabBook pro-
vides rich collaborative metadata graphs on enterprise data
lakes [42]. Skluma [43] also extracts metadata graphs from
a file system of datasets. Many of these metadata approaches
include the use of static or dynamic linkage graphs [21], [30],
[44], [45], join graphs for adhoc navigation [46], or version
graphs [47]. These graphs allow navigation from dataset
to dataset. However, none of these approaches learn new
navigation structures optimized for dataset discovery.

Taxonomy Induction - The task of taxonomy induction
creates hierarchies where edges represent is-a (or subclass)
relations between classes. The is-a relation represents true
abstraction, not just the subset-of relation as in our approach.
Moreover, taxonomic relationship between two classes ex-
ists independent of the size and distribution of the data be-
ing organized. As a result, taxonomy induction relies on on-
tologies or semantics extracted from text [13] or structured
data [48]. Our work is closes to concept learning, where
entities are grouped into new concepts that are themselves
organized in is-a hierarchies [49].

Faceted Search - Faceted search enables the exploration
of entities by refining the search results based on some
properties or facets. A facet consists of a predicate (e.g.,
model) and a set of possible terms (e.g., Honda, Volvo).
The facets may or may not have a hierarchical relation-
ship. Currently, most successful faceted search systems rely
on term hierarchies that are either designed manually by
domain experts or automatically created using methods
similar to taxonomy induction [15], [50], [51]. The large
size and dynamic nature of data lakes make the manual
creation of a hierarchy infeasible. Moreover, since values in
tables may not exist in external corpora [3], such taxonomy
construction approaches of limited usefulness for the data
lake organization problem.

Keyword Search - Google’s dataset search uses key-
word search over metadata and relies on dataset owners
providing rich semantic metadata [1]. As shown in our user
study this can help users who know what they are looking
for, but has less value in serendipitous data discovery as a
user tries to better understand what data is available in a
lake.

7 CONCLUSION AND FUTURE WORK

We defined the data lake organization problem of creating
an optimal organization over tables in a data lake. We
proposed a probabilistic framework that models navigation
in data lakes on an organization graph. The data lake
organization problem is framed as an optimization problem
of finding an organization that maximizes the discovery
probability of tables in a data lake and proposed an efficient
approximation algorithm for creating good organizations.
To build an organization, we use the attributes of tables
together with any tags over the tables to combine table-level
and instance-level features. We proposed a metadata enrich-
ment technique for annotating attributes with tags, when
the metadata is sparse. The metadata enrichment is a multi-
label multi-class classification problem. As an application
exercise, we modeled the problem as a set of binary classi-
fiers for each tag. For future work, we plan to explore more
elaborate algorithms for training a multi-class classifier of
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all tags. The effectiveness and efficiency of our system are
evaluated by benchmark experiments involving synthetic
and real world datasets. We have also conducted a user
study where participants use our system and a keyword
search engine to perform the same set of tasks. It is shown
that our system offers good performance, and complements
keyword search engines in data exploration. Future work
includes integrating keyword search and navigation as two
interchangeable modalities in a unified data exploration
framework. Based on the feedback and comments from the
user study, we strongly believe that these extensions will
further improve the user’s ability to navigate in large data
lakes.
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