
Data Driven Relational Constraint Programming
Michael Valdron

Ontario Tech University
2000 Simcoe Street North
Oshawa, Ontario L1G 0C5

Email: michael.valdron@ontariotechu.ca

Ken Q. Pu
Ontario Tech University

2000 Simcoe Street North
Oshawa, Ontario L1G 0C5

Email: ken.pu@ontariotechu.ca

Abstract—We propose a data-driven constraint programming
environment that merges the power of two separate domains:
databases and SAT-solvers. While a database system offers
flexible data models and query languages, SAT solvers offer the
ability to satisfy logical constraints and optimization objectives.
In this paper, we describe a goal-oriented declarative algebra that
seamlessly integrates both worlds. Bring from proven practices
in functional programming, we express constants, variables and
constraints in a unified relational query language. The language
is implemented on top of industrial strength database engines
and SAT solvers.

In order to support iterative constraint programming with
debugging, we propose several debugging operators to assist with
interactive constraint solving.

I. INTRODUCTION

Constraint satisfaction problems have a long history. There
have been numerous breakthroughs [1] [2] that resulted in
modern SAT solvers that can solve substantial problems at
the industrial scale.

Concurrent with the development of constraint satisfaction
solvers, we have seen tremendous advances in the implemen-
tations of large scale database systems. With the growing
reliance on data-driven decision making both by software
and users, databases are playing a central role in systems
and organizations. Thus, safety and data quality have become
significant issues associated with data-driven decision making.
While database systems often offer some level of integrity
checking, these features mostly deal with data integrity verifi-
cation (typically done in polynomial time), but not tasks such
as constraint satisfaction, or optimization (typically are NP-
complete). These tasks are perfectly suitable for SAT-solvers.
Unfortunately, there have been little efforts in incorporating
SAT solvers into the data processing pipeline.

We are motivated to build new data processing solutions
based on elements from the two pillars: databases and con-
straint satisfaction. In this paper, we present a well-defined
abstraction in the form of a data-driven constraint program-
ming language. The language has a core algebra, which is
based on the nested relational algebra of SQL but also extends
with constraint-based operators. The language allows users
to compose the algebraic operators to transform data into a
set of constraints consisting of both data and variables. At
the implementation level, this is done using a combination
of database queries and data transformation. Next, one can
invoke the SAT solving operators to generate the solution if

the constraints are feasible. This is done using a constraint
solver. The solution is then stored back to the database.

From modern software engineering practices, we have
learned that the most significant challenge in software develop-
ment is to mitigate software bugs based on human error. To this
end, programming languages are equipped with type systems
and interactive read-evaluate-print-loop (REPL) interfaces. It
has been shown that a static type system can be extended
to constraint programming [3]. In this paper, we will further
extend the experience of constraint programming by operators
for interactive constraint satisfaction. The equivalence to a
program runtime failure is if the constraints are infeasible,
i.e. no solutions exist. Our implementation offers conflict
detection and conflict repair operators, which can be used
to identify sets of conflicting constraints, and automatically
generate feasible subproblems by disabling a minimal number
of constraints. These features are designed to support the
user in understanding the conflicts that exist in the constraint
program.

We introduce two debugging operators: conflict detection
and minimal repairs. We demonstrate that they are efficiently
computable sets, and these sets can help the user to identify
the source of infeasibility within constraint programs, as well
as automatic repairs.

The organization of the paper is as follows:
• Section II formally defines the unified data model for

nested relational constraint satisfaction problems. We
define an algebra with both data manipulation and con-
straint construction operators. Coupled with the standard
functional programming instructions, one can use them to
express complex constraint programs in various domains.

• Section III defines several operators to support iterative
constraint programming development. These operators
are designed to be invoked interactively to identify con-
flicts in infeasible programs, or minimal repairs of infea-
sible programs. We will also describe how our framework
permits intuitive and informative visualization of such
conflicts or repairs.

• Section IV provides the implementation and evaluation
details.

• Section V surveys related work, and highlights the major
differences of our work compared to previous literature.

• Finally, Section VI summaries our findings and discusses
future directions of this research program.



II. CONSTRAINT RELATIONAL ALGEBRA

In this section, we will define a model for constraint rela-
tions. The model generalizes the first-order relational model
and its query language of relational algebra with aggregation
[4]. The relational model is extended with two fundamentally
new data types: variables and constraints. We also extend
the relational algebra with aggregation with arithmetic and
aggregation operators. These extensions are to handle variables
and first-order constraints.

For readability, we choose to express the foundation of rela-
tional bases (data model and the relational algebraic operators)
in terms of the well-established syntax of Structured Query
Languages (SQL). We believe that this makes our extensions
more intuitive and readable without loss of rigour.

A. Relational model with constraints

The current relational model adopted by modern database
systems support relations with strongly-typed columns. The
SQL standard defines the types of columns. Typical column
types are: FLOAT, TEXT, VARCHAR, TIMESTAMP, and
more. Databases such as PostgreSQL also supports user-
defined ENUM and user-defined types. So, it is possible to
create types such as CITY, or DAY OF WEEK. We will
denote the data types as τdata.

We extend the relational model with two fundamentally new
column types: variables and constraints. A relation r can have
columns r(c1, c2, . . . cn). Each column ci has a type τ where τ
can be one of the data types as permitted by the SQL standard,
or:
• VAR[τdata]
• Constraint

For example, we can have the following table schema in the
extended constraint relational model.

CREATE TABLE T (
a INTEGER,
b INTEGER,
x? VAR[INTEGER]

)

Instances of such schema would contain two columns (a
and b) of integers, but the column x? contains variables
whose values are unspecified, and could only be determined by
solving constraints. Variable constructors can create variable
instances.

We can insert into an instance of T as:

INSERT INTO T(a, b, x?)
VALUES (10, 20, new_var())

Since we know that T.x has the type Var[Integer], the
constructor new_var does not need type hints.

Next we need constraint columns. A column can have the
type Constraint, and its instance will be a logical formula
defined by variables, data constants and constraint operators.
To separate constraint operators from SQL logical operators,
we use the notation :< : instead of <. The former is

a constraint operator, while the latter is the regular SQL
comparison operator. Similarly, all constraint operators will
be written in the form of : ◦ :.

For example, here is a table with a constraint column and
a text column. Note, the variable used in this constraint is
unbounded.

CREATE TABLE U(c CONSTRAINT, comment TEXT);
INSERT INTO U
VALUES ((0 :<: x? :and: x? :<: 10),

’small numbers’);

Typically, we work with constraints whose variables are
bounded. Referring to the table T above, we can now de-
fine a new table U based on T with a constraint column
which specifies that x is in between [a, b], expressed as
(a :< : x) :and : (x :< : b).

CREATE VIEW V(c CONSTRAINT) AS
(SELECT (a :<: x? :and: x? :<: b)
FROM T)

The above example demonstrates a powerful aspect of
relational algebra, namely deriving new columns in views.
With our constraint relational model, one can derive new
columns using the following mechanisms. The view V as
defined above uses expression operators a :<: x?, and
constraint operators ... :and: ....
• new variables using the new_var constructor
• Expression operators such as :+:, :-:, :*:, :/:
• new constraints using constraint operators.
Other constraint operators are: :not : , :or : , :imply : ,

:different : , and more.

B. Aggregation queries of constraint relations

We also extend relational algebra with aggregation in a
natural way. Aggregation can be performed on variables and
expressions by compatible aggregation functions with the data
type of the variables.

For example, suppose we have a relation:

CREATE TABLE R (
item_id INTEGER PRIMARY KEY
color ENUM(’red’, ’green’, ’blue’)
x? VAR[Integer]
y? VAR[enum(’red’, ’green’, ’blue’)]

) AS ...

It has two variable columns with data types of Integer
and enum(...). We can apply numerical aggregation (e.g.
:sum:, :max:, :min:) to x? because its’ underlying data
type is numerical. The result is not a number, but rather, it
will be an expression involving one or more variables. Since
y? variable in R has the data type of enum, we can only
use a restricted set of aggregation functions: :count : and
:countdistinct : .

The following query generates a relation with two columns
(color, total?). Note that total? is a variable column of type
Var[Integer].



SELECT color, :sum:(x?) as total?
FROM R
GROUP BY color

The following query generates variables for each distinct
color in R that represents the distinct number of solutions of
y?.

SELECT color, :count:(y?) as c?
FROM R
GROUP BY color

Finally, we extend aggregation to include constraint
columns. We support two types of aggregation: conjunctive
aggregation :every : and disjunctive aggregation :some : .
The semantics is that :every : (x?) constructs a new boolean
variable which is true if and only if every instance of x? is true
in the respective group-by partition. Similarly, :some : (x?)
is a boolean variable that is true if and only if at least one x?
is true in the group-by partition.

For the relation R(color, x?, y?) defined above, we
can apply the following group-by query using aggregation of
constraints.

SELECT color,
:every:(x? :>: 10) AS c1?,
:some(y? :=: ’blue’) AS c2?

FROM R
GROUP BY color

C. Solving constraint relations

Section II-A and Section II-B describes how we can
transform relations with constraints and variables using the
extended query language. The eventual goal is to find solutions
of variables so that goals are satisfied. This eventual goal is
fundamentally new in constraint programming compared to
database query processing: we need to declare goals explicitly
to be satisfied. In this section, we define the semantics and a
simple syntactic extension to SQL for goal declaration.

Global variable scope: We assume that all variables that
are stored in tables and views are indexed in a global registry.
Some variable object identifier can uniquely identify each
variable. The global variable scope is a collection of variable
objects:

V = {v1, v2, . . . , vn}

The variable scope V is updated by base constraint relations
as well as creations of views that have derived expression
and variable constructors. Therefore, executing a query like
CREATE VIEW ... may trigger new variables being added
to the global variable scope V .

Global goal scope: We assume a goal is a complex con-
straint. Each goal is identified by a key which can be a unique
user-defined name assigned to the goal, or a tuple of data
values. Thus, a goal can be modeled as a key-constraint pair:
k 7→ θ(x1, x2, . . . , xn) where k is the goal’s key and θ the
constraint. The variables of a goal must be defined in the

global variable scope. The global goal scope is a mapping
of keys to constraints:

G = {ki 7→ θi : i = 1 . . .m}

To add goals to G, we need to do so with a G-mutation
operator explicitly:

CREATE GOAL [name] AS θ
where the key for the goal is name, and the constraint is θ. If

name is omitted, the system will assign a unique randomized
string as the goals key. Note that θ can be constructed as the
result of an aggregation query over a constraint relation.

To add multiple goals to G, we use:
CREATE GOALS AS

SELECT a1, a2, ai, θ
FROM ...

Where (a1, a2, . . . ai) are data expressions, and θ is a
constraint expression. This will add multiple goals to G, with
each role in the SELECT query being one goal. Each goal has
its key as (a1, a2, . . . ai), and the constraint as θ.

Using CREATE GOAL and CREATE GOALS form G.
Thus, the final constraint SAT program is 〈G,V 〉.

We trigger the solver to find solutions to the variables when
we select from the SOLUTION(r) where r is a relation or view
containing variables.

SELECT x?, y?, . . .
FROM SOLUTION( r )
...

Note that we are selecting from not the relation r, but its
solution SOLUTION(r). The selected variable columns x? and
y? will be replaced with data values from their solutions.
Expression columns and constraint columns will also be data
values.

In Section III, we will look at additional solution triggering
operators to support iterative and interactive constraint debug-
ging.

D. A case study

Suppose we have a database of cities.

Cities
| city | state |
|------------------|-------|
| San Francisco | CA |
| Los Angeles | CA |
| Las Vegas | NV |
| Salt Lake City | UT |
| ... | ... |

We also have information on the type of tourist activities in
each city.

CityActivities
| city | activity |
|------------------|------------|
| San Francisco | Shopping |
| San Francisco | Hiking |
| Los Angeles | Shopping |
| Los Angeles | Restaurant |



| Las Vegas | Shopping |
| Las Vegas | Theatre |
| Salt Lake City | Hiking |
| ... | ... |

We want to plan a road trip with the following constraints:
C1: The trip lasts 3 days. We visit a different city each day.
C2: We wish to visit at least two states.
C3: We will do two activities each day (morning and after-

noon).
C4: We want to experience at least 5 different experiences.

We declare the following variables.

TravelPlan
| day | city? |
|-----|-------|
| 1 | ? |
| 2 | ? |
| 3 | ? |

We also need the activity variables.

ActivityPlan
| day | time | act? |
|-----|-----------|------|
| 1 | morning | ? |
| 1 | afternoon | ? |
| 2 | morning | ? |
| 2 | afternoon | ? |
| 3 | morning | ? |
| 3 | afternoon | ? |

The next step to impose the goals:
C1: all cities are distinct

CREATE GOAL AS
SELECT :distinct:(city?)
FROM TravelPlan

C2: visit two different states
The first step is that we create new variables that represent

the states to be visited.

CREATE VIEW TravelPlanStates AS
SELECT city?, new-var() as state?
FROM TravelPlan

This query produces a relation of variables over both cities
and states.

TravelPlanStates
| day | city? | state? |
|-----|-------|--------|
| 1 | ? | ? |
| 2 | ? | ? |
| 3 | ? | ? |

First, we must restrict the states variable state? to be
the state of the city variable city?. To do this, we join
TravelPlanStates with Cities in order to compute
multiple constraints, each will be set as a goal.

CREATE GOALS AS
SELECT

name, state,
(city? :=: name :=>: state? :=: state) as c

FROM TravelPlanStates
JOIN Cities

Now, we can express the state coverage constraints.

CREATE GOALS AS
(SELECT :countdistinct:(state?)
FROM TravelPlanStates)
:>=: 2)

Next, we express the constraint of two activities each day.
First, we change the layout:

CREATE VIEW ActivityPlan2 AS
SELECT day,

S.act? AS act_morng?,
T.act? AS act_aftn?

FROM ActivityPlan S
JOIN ActivityPlan T
USING (day)
WHERE S.time = "morning"
AND T.time = "afternoon"

The view has the same set of activity variables but arranged
into two separate columns.

ActivityPlan2
day | act_morng? | act_aftn? |
----|------------|-----------|
1 | ? | ? |
2 | ? | ? |
3 | ? | ? |

We can now assert that the morning and afternoon activity
variables must be distinct.

CREATE GOALS
SELECT act_morng? <> act_aftn?
FROM ActivityPlan2

Now, we need to restrict the activity variables act?
to be available in the city city? according to the
CityActivities. One of these constraints looks like: if
city? = ”Las Vegas”— then (act? = “Shopping” or act?
= “Theatre”)

This constraint can be expressed in first-order logic as:

city? = LasVegas

=⇒ act? = Shopping ∨ act? = Theatre

Equivalently, we can also express it in aggregated form:∑
city? = LasVegas =⇒ act? = Shopping

city? = LasVegas =⇒ act? = Theatre

To impose all such constraints, we make use of constraint
aggregation in the query language.



CREATE GOALS
SELECT
city,
:some:(city? :=: city :=>: act? :=: act)
FROM ActivityPlan
JOIN CityActivities
GROUP BY city?, city

The final constraint is that we cover at least five different
activities. Counting the distinct activities achieves this.

CREATE GOAL
SELECT :countdistinct:(act?) :>=: 5
FROM ActivityPlan

III. ITERATIVE CONSTRAINT PROGRAMMING

Given the data-driven nature of the relational constraint
programming, we can potentially generate thousands of goals
over millions of variables. It becomes exceedingly easy for
some of the constraints to be conflicting, and therefore the
whole relational constraint program 〈G,V 〉 (as defined in
Section II-C) to be infeasible.

The infeasibility of 〈G,V 〉 might be due to several reasons:
• Error in the relational constraint queries
• Inherit conflicts in the data
• Unreasonable expectations of the goals
We must provide support by providing the developer tools

to identify the source of infeasibility. We want to provide the
following debugging capabilities:
• Localize the conflicting constraints
• Provide automatic constraint repair in order to generate

partial solutions

A. Conflict Detection

Definition 1 (Conflict Sets): A set S ⊂ G of constraints is
a conflict set if 〈S, V 〉 is infeasible. S is a min-conflict set if
S is a conflict set, but none of its subsets are conflict sets.

Conflicts can occur in complex ways. When the entire goal
scope 〈G,V 〉 is infeasible, we want to compute some min-
conflict set S so that we can examine the source of the
infeasibility.

Conflict detection operator accomplishes this:

con : G 7→ S

where con(G) ⊆ G is just one of the conflict sets.
We can compute con(G) in two different ways: bottom-up

or topdown. In the bottom-up approach, we start with S = ∅,
and incrementally add goals until we find a S that is infeasible.

Algorithm: con with bottom-up computation
let X = powerset(G)
let X = sort X by cardinality
for X in X

if 〈X,V 〉 is infeasible:
return X

end if
end for

Another approach is to compute con(G) using a topdown
approach. We start with G and remove elements until G−X
becomes feasible. We return the previous infeasible goal set
as con(G).

Algorithm: con with topdown computation
let X = S = G
for g ∈ G

let X ′ = X − {g}
if X ′ is feasible:

return X
else

let X = X ′

end if
end for

B. Optimal Conflict Repair

The con(G) operator returns one of the conflict sets in G
to help users understand the source of conflict. Unfortunately,
this may still result in a large number of mutually conflicting
goals. We want to be able to automatically disable the minimal
number of goals so that the problem becomes feasible.

Definition 2 (Repair Sets): Let R ⊆ G be a set of goals. It
is a repair set if 〈G−R, V 〉 is feasible. R is a min-repair set
if no subset of R is a repair set.

We introduce a repair operator:

repair : G 7→ R

It turns out that we can pose the optimal repair as a
MAX-SAT optimization problem where we introduce a linear
maximization object to the SAT problem:

〈G,V, h〉

Where h is a score function to be maximized. MAX-SAT
allows one to find solutions of V that satisfies all the goals in
G and while maximizing the function h.

We can make use of MAX-SAT to solve the min-repair
problem. For each goal Gi = θi we define a new enable
boolean variable αi that can be used to disable the goal Gi.
This is done by replacing Gi with a new goal G′i = (αi =⇒
θi). If αi = 0, then Gi does not need to be satisfied since
0 =⇒ 0 is still true.

So, we define a new variable scope as V ′ = V ∪ {αi : i ∈
G}, and a new goal scope as G′ = {αi =⇒ θi : i ∈ G}.
Now, we can define the maximization function h =

∑
i αi.

Namely, we try to enable as many goals as possible and still
remain feasible.

Algorithm repair using MAXSAT
let V ′ = {αi |= boolean : i ∈ keys(G)}
let G′ = {i 7→ (αi =⇒ θi) : i ∈ keys(G)}
let h =

∑
i∈keys(G) αi

MAXSAT(G′, V ′, h)
return {i : solution(αi) = 0}

IV. IMPLEMENTATION AND EVALUATION

The entire system is implemented on top of Google OR-
Tools [5] and custom application code in using the Clojure



(a) Conflict Set Detection (bottom-up) (b) Conflict Set Detection (topdown) (c) Optimal Repairs

Fig. 1: Performance of interactive debugging operators

programming language. We have implemented the core con-
straint relational algebra and utilizes the Google OR-Tools to
perform the SAT solver and the MAX-SAT solver.

In this section, we present some experimental evaluation of
our implementation.

A. 3-CNF

Following the standard evaluation of SAT solvers [6], [7],
we generate random 3-CNF instances consisting of a set of
randomized disjunctive clauses containing literals of variables
or their negations.

Figure 1 shows the performance characteristics of the de-
bugging operators. We observe that both implementations of
con are more costly than the repair operator. This observation
suggests that as an interactive tool, the system can incre-
mentally make auto-suggestions on how constraints should be
disabled to make the while problem feasible.

B. Segment Overlapping

For the second round of experiments, we use the problem
we call the Segment Overlapping problem. The key here is to
use the Segment Overlapping problem to provide an additional
evaluation of the performance of the algorithms defined back
in Section III to further show the value in using data-driven
goals. To begin, we must define a few concepts.

Definition 3: A Segment is an abstract collection of
variables which includes a lower bound (segment start point)
Slower, a segment length Slength, and a upper bound (segment
end point) Supper.

Each segment also include a hidden constraint which is
defined as Slength = Supper − Slower. This constraint ensures
that the Slength does not break the restrictions imposed by the
bounds Slower and Supper.

Definition 4: A NoOverlap is a constraint that enforces
that all segments associated with it are unable to overlap each
other. For more a formal definition of this constraint see [8].

In our problem, we only consider segment pairs for the
NoOverlap constraints, which we abstract to goals. The
Segment Overlapping problem is set up the following way:
• There exists predefined number of segments Sn, all with

a Slength ∼ N (µ, σ2) which is randomly sampled, a
Slower ∈ Dlower, and a Supper ∈ Dupper

• There are NoOverlap constraints for each of the segment
pairs, such that there is

(
n
2

)
constraints

• The overall problem is created from parameters and a
Database

The problem is then run against the debug algorithms
over the number of epochs n, which recreates the problem
with different sampled Slength for every segment. We ran this
overall experiment in three stages with the same n but with
altered parameters. A parameter depth is used as an additional
parameter for the topdown version of con denoted as cont to
specify how many conflict-sets to pass over before returning
one. depth is added for better efficiency of cont. The rest of
the changes in the experiments are done with the Databases.
There are three Databases for each experiment, and each has
input data that differ between experiments. The attributes of
these Databases are as follows:
• The number of segments Sn

• The mean µ of the normal distribution of Slength
• The standard deviation σ of the normal distribution of
Slength

• The lower bound Slower (left the same in all experiments)
• The upper bound Supper (left the same in all experiments)
The alterations done in each of the three can be seen in

Figures 2a, 2b, and 2c as well as the performance outcomes.
All of the Figures in Fig. 2 shows the amount of runtime in
milliseconds over each epoch. The Figures y-axis are in log
scale to both properly show the smaller and larger changes in
the runtimes.

Figure 2a shows the experiment with the smallest amount
of segments and constraints. It has a large µ and σ. The
depth parameter is only 2 as it will likely not take long to
find conflicts in a pool of 10 constraints. Figure 2b shows
the experiment with the in-between number of segments and
constraints. Unlike the other experiments, this one has a
smaller σ, and this has a significant aspect that we will get



0 2 4 6 8
Epochs (n)

101

102

Ti
m

e 
(m

s)
mean avg: 15.00, std: 20.00, depth (retraction only): 2

lower bounds: [0, 50], upper bounds: [0, 50]
bottom-up
top-down

(a) 5 Segments, 10 Constraints

0 2 4 6 8
Epochs (n)

101

102

103

104

105

106

Ti
m

e 
(m

s)

mean avg: 7.00, std: 15.00, depth (retraction only): 3
lower bounds: [0, 50], upper bounds: [0, 50]

bottom-up
top-down

(b) 8 Segments, 28 Constraints

0 2 4 6 8
Epochs (n)

101

102

103

Ti
m

e 
(m

s)

mean avg: 5.00, std: 20.00, depth (retraction only): 4
lower bounds: [0, 50], upper bounds: [0, 50]

bottom-up
top-down

(c) 10 Segments, 45 Constraints

Fig. 2: Segment Overlapping

back to later. The µ is also smaller, with the increase of the
segments within the same bounds domains Dlower and Dupper.
Figure 2c shows the experiment with the largest problem of
10 segments and 45 constraints. This experiment, however, has
the same σ as the first but has the lowest µ of them all.

Notice from the figures where conflicts occur, the points
close to zero milliseconds are runs, which immediately return
nothing as the whole problem is feasible. The spike points in
the figures, on the other hand, are points when the problem
was infeasible, and the algorithms had to run a search for
conflict.

Let us return to the smallest σ experiment shown in Figure
2b, this one had the more significant spike points. This
pattern is due to the lower σ this experiment has. The pattern
shows that the segment lengths are more likely to hover
around the middle, causing fewer conflicts to happen with
fewer constraints or with lots of constraints, which causes
conflict searching to become longer for specific heuristics. The
heuristic of the issue with this as the figures show is bottom-up
conb, this unlike the cont heuristic does not hit conflicts right
away or has the efficiency benefit of using the depth parameter
as a stopping point. All this, of course, also depends on the µ
being closer to the middle of the chosen bounds.

To look at pattern further we have compiled the averages
and standard deviations of the huerstics’ runtime results.
The similar as the figures, these results will be presented
in scientific notation. For conb, we have an average µb

of 2.82 × 104 milliseconds and a standard deviation σb of
1.52 × 105 milliseconds. For cont, we have an average µt

of 2.40 × 101 milliseconds and a standard deviation σt of
1.67× 101 milliseconds.

We can immediately see that µb outruns the other average
times µrand and µt as this pattern is seen in the figures. If
we look at σb, the value is also high, meaning that conb
has significant runtime differences throughout epochs, which
also the pattern can be seen in the figures. From seeing this
and the figures, we can see that conb runtimes depend on the
placement of the conflicts within the powerset.

Why does all this matter in showing the value of data-driven
goals? All this shows that we can efficiently perform these

kinds of analyses with data to drive the problem.

V. RELATED WORK

Constraint Programming is useful for one to use for any
problems which are NP-Complete, discrete, and determinis-
tic [9]. SAT Solvers are one of the solutions to implementing
constraint programming models. OR-Tools SAT Solver, an
open-sourced solver developed by Google [5], is one of the
most modern efficient SAT solvers to date. OR-Tools has won
first, second, and third place in its ability to solve many
of the problems in the recent MiniZinc challenges [7][6],
parallelized challenges in particular. It is due to OR-Tools’
efficient and modernized implementation, which is why we
chose to target it for our work. Other well known SAT Solvers
include Chaff [10], MINISAT [11], Tinisat [12], FznTini [13],
and BEE [14]. More information on SAT Solvers can be found
in [15][16].

Constraint Programming is not just limited to SAT Solvers,
Prolog Systems, are a form of CP solvers that uses Prolog, a
logic programming language [17], also allow one to design a
CP model programmatically to solve a Boolean Satisfiability
Problem (CSP). One such Prolog System used in most of the
related works is the GNU Prolog Solver [18] implemented
as an open-sourced solution to do constraint programming in
Prolog.

Debugging Constraint Programming models provide one
with a better understanding of what is happening with the vari-
ables and constraints during evaluation. This is why research
into conflict detection, model data abstraction, and annotating
items in CP Models has been studied in plenty of other works.
What sets our work from most other forms of solutions to
the problem presented in our paper is that these solutions
are typically designed to be incorporated into CP/SAT Solver
implementations, such as the conflict-driven learning strategy
purposed in [19] which is used within Google’s OR-Tools
SAT Solver [5] implementation we target. More information
on what is included in modern SAT Solvers can be found in
[20].

Other works similar to ours look into a method of abstrac-
tion called S-Boxes for Visualizing CP debugging [21] [22].



This work also goes into the idea of Goals, which in this
work is defined as being S-Boxes within S-Boxes [21]. The
last conflict policy is another strategy to find relevant conflicts,
and a method that follows this is proposed in [23]. As implied,
the last conflict policy says one is to assume the last culprit
found in the search tree during the propagation phase is the
culprit, most likely causing grief in the Constaint Network of
a CP model [23].

Data abstraction of CSPs is not just excellent for conflict
detection, but also for merely visualizing the problems those
needing to see what is happening. An example of this includes
the work [21], which was mentioned earlier. Another solution
done by [24] purposes storing variables and constraints in
the CSP within an XML data structure with annotations to
properly abstract the data to users using their CP visualization
tools.

It is due to the significance of and reasons for needing to
abstract CSPs into high-level pieces of information, which has
motivated us to bring a solution similar to these to the modern
interactive programming environment for a better experience
tackling CSPs.

VI. CONCLUSION AND FUTURE WORK

We have presented a relational constraint programming
framework that allows data-driven constraint satisfaction solv-
ing. Our design merges the power of relational algebra with
constraint solving. We have extended the SQL language to
include computation and aggregation of variables and con-
straints, which are used to create goals.

To support interactive and iterative debugging, we intro-
duced two operators: con and repair that computes the con-
flicting set and repair set, respectively. We have shown that
they can be used at scale to help the system to assist with
identifying issues and repairs of the constraint program.

Future work includes the static analysis and query opti-
mization of the constraint program. We are also interested in
generating visualizations of intermediate and final results.

REFERENCES

[1] V. Kumar, “Algorithms for constraint-satisfaction problems: A survey,”
AI magazine, vol. 13, no. 1, pp. 32–32, 1992.

[2] P. Codognet and D. Diaz, “Compiling constraints in clp(FD),” The
Journal of Logic Programming, vol. 27, no. 3, pp. 185–226, Jun.
1996. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0743106695001212

[3] F. Fages and E. Coquery, “Typing constraint logic programs,” Theory
and practice of logic programming, vol. 1, no. 6, pp. 751–777, 2001.

[4] S. Abiteboul, R. Hull, and V. Vianu, Foundations of databases.
Addison-Wesley Reading, 1995, vol. 8.

[5] L. Perron and V. Furnon, “Or-tools,” Google. [Online]. Available:
https://developers.google.com/optimization/

[6] P. J. Stuckey, T. Feydy, A. Schutt, G. Tack, and J. Fischer,
“The MiniZinc Challenge 2008–2013,” AI Magazine, vol. 35,
no. 2, pp. 55–60, Jun. 2014, number: 2. [Online]. Available:
https://aaai.org/ojs/index.php/aimagazine/article/view/2539

[7] P. J. Stuckey, R. Becket, and J. Fischer, “Philosophy of the MiniZinc
challenge,” Constraints, vol. 15, no. 3, pp. 307–316, Jul. 2010. [Online].
Available: https://doi.org/10.1007/s10601-010-9093-0

[8] P. Hentenryck, V. Saraswat, and Y. Deville, “Design, implementation,
and evaluation of the constraint language cc(FD),” in Constraint
Programming: Basics and Trends, G. Goos, J. Hartmanis, J. Leeuwen,
and A. Podelski, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
1995, vol. 910, pp. 293–316, series Title: Lecture Notes in
Computer Science. [Online]. Available: http://link.springer.com/10.
1007/3-540-59155-9 15

[9] E. E. Ogheneovo, “Revisiting Cook-Levin theorem using NP-
Completeness and Circuit-SAT,” International Journal of Advanced
Engineering Research and Science, vol. 7, no. 3, Mar. 2020, number:
3. [Online]. Available: http://journal-repository.com/index.php/ijaers/
article/view/1749

[10] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: engineering an efficient SAT solver,” in Proceedings of the
38th annual Design Automation Conference, ser. DAC ’01. Las Vegas,
Nevada, USA: Association for Computing Machinery, Jun. 2001, pp.
530–535. [Online]. Available: https://doi.org/10.1145/378239.379017

[11] N. Eén and N. Sörensson, “An Extensible SAT-solver,” in Theory and
Applications of Satisfiability Testing, ser. Lecture Notes in Computer
Science, E. Giunchiglia and A. Tacchella, Eds. Berlin, Heidelberg:
Springer, 2004, pp. 502–518.

[12] J. Huang, “A Case for Simple SAT Solvers,” in Principles and Practice
of Constraint Programming – CP 2007, ser. Lecture Notes in Computer
Science, C. Bessière, Ed. Berlin, Heidelberg: Springer, 2007, pp. 839–
846.

[13] ——, “Universal Booleanization of Constraint Models,” in Principles
and Practice of Constraint Programming, ser. Lecture Notes in Com-
puter Science, P. J. Stuckey, Ed. Berlin, Heidelberg: Springer, 2008,
pp. 144–158.

[14] A. Metodi, M. Codish, and P. J. Stuckey, “Boolean Equi-propagation
for Concise and Efficient SAT Encodings of Combinatorial Problems,”
Journal of Artificial Intelligence Research, vol. 46, pp. 303–341, Mar.
2013, arXiv: 1402.0568. [Online]. Available: http://arxiv.org/abs/1402.
0568

[15] M. R. Prasad, A. Biere, and A. Gupta, “A survey of recent advances
in SAT-based formal verification,” International Journal on Software
Tools for Technology Transfer, vol. 7, no. 2, pp. 156–173, Apr. 2005.
[Online]. Available: https://doi.org/10.1007/s10009-004-0183-4

[16] S. Alouneh, S. Abed, M. H. Al Shayeji, and R. Mesleh, “A
comprehensive study and analysis on SAT-solvers: advances, usages
and achievements,” Artificial Intelligence Review, vol. 52, no. 4, pp.
2575–2601, Dec. 2019. [Online]. Available: https://doi.org/10.1007/
s10462-018-9628-0

[17] W. Clocksin and C. S. Mellish, Programming in Prolog: Using the ISO
Standard, 5th ed. Berlin Heidelberg: Springer-Verlag, 2003. [Online].
Available: http://www.springer.com/gp/book/9783540006787

[18] D. Diaz and P. Codognet, “Design and Implementation of the GNU
Prolog System,” Journal of Functional and Logic Programming, vol.
2001, no. 6, 2001.

[19] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik, “Efficient conflict
driven learning in a Boolean satisfiability solver,” in IEEE/ACM Interna-
tional Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM
Digest of Technical Papers (Cat. No.01CH37281), Nov. 2001, pp. 279–
285, iSSN: 1092-3152.

[20] H. Katebi, K. A. Sakallah, and J. P. Marques-Silva, “Empirical Study
of the Anatomy of Modern Sat Solvers,” in Theory and Applications
of Satisfiability Testing - SAT 2011, ser. Lecture Notes in Computer
Science, K. A. Sakallah and L. Simon, Eds. Berlin, Heidelberg:
Springer, 2011, pp. 343–356.

[21] F. Goualard and F. Benhamou, “A visualization tool for constraint pro-
gram debugging,” in 14th IEEE International Conference on Automated
Software Engineering, Oct. 1999, pp. 110–117.

[22] ——, “Debugging Constraint Programs by Store Inspection,” in
Analysis and Visualization Tools for Constraint Programming:
Constraint Debugging, ser. Lecture Notes in Computer Science,
P. Deransart, M. V. Hermenegildo, and J. Małuszynski, Eds.
Berlin, Heidelberg: Springer, 2000, pp. 273–297. [Online]. Available:
https://doi.org/10.1007/10722311 12

[23] C. Lecoutre, L. Saı̈s, S. Tabary, and V. Vidal, “Reasoning from
last conflict(s) in constraint programming,” Artificial Intelligence,
vol. 173, no. 18, pp. 1592–1614, Dec. 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0004370209001040

[24] F. Fages, S. Soliman, and R. Coolen, “CLPGUI: A Generic Graphical
User Interface for Constraint Logic Programming,” Constraints,
vol. 9, no. 4, pp. 241–262, Oct. 2004. [Online]. Available:
https://doi.org/10.1023/B:CONS.0000049203.53383.c1


